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In this paper we bridge local and global approximation theorems for positive
linear operators via Ditzian�Totik moduli |2

,( f, $) of second order whereby the
step-weights , are functions whose squares are concave. Both direct and converse
theorems are derived. In particular we investigate the situation for exponential-type
and Bernstein-type operators. � 1998 Academic Press

1. INTRODUCTION

In [6] it was shown that for the Bernstein operator (Bn f )(x)=
�n

k=0 pn, k(x) f (k�n), pn, k(x)=( n
k) xk(1&x)n&k, the estimate

| f (x)&(Bn f )(x)|�C|2
.* ( f, n&1�2.(x)1&*), x # I=[0, 1], (1)

holds true, where * # [0, 1], .(x)=- x(1&x), and the Ditzian�Totik
modulus of smoothness of second order is given by

|2
,( f, $) := sup

|h|�$
sup

x\h,(x) # I
| f (x&,(x) h)&2 f (x)+ f (x+,(x) h))|,

in which ,: [0, 1] � R is an admissible step-weight function (for details see
[9]).

The case *=0 in (1) gives the classical local estimate whereas *=1 gives
the global norm estimate developed by Ditzian and Totik. Therefore (1)
bridges the gap between the local and global approximation theorems for
the Bernstein operator. Such results for polynomial approximation were
previously investigated by [7, 8 and 14].

Inequality (1) shows that the error f (x)&(Bn f )(x) is bounded point-
wise by C(n&1�2.(x)1&*): if |2

.* ( f, $)=O($:) and : # [0, 2]. It can be
seen from [5, 16] that the converse result also holds true. With this,
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|2
.* ( f, $)=O($:) can be characterized in terms of the Bernstein operator;

that is, the equivalence

| f (x)&(Bn f )(x)|=O((n&1�2.(x)1&*):) � |2
.* ( f, $)=O($:)

holds true for all : # (0, 2) and * # [0, 1].
Moreover, in [10] inequality (1) could be further extended to the

more general inequality

| f (x)&(Bn f )(x)|�C|2
. \ f, n&1�2 .(x)

,(x)+ , x # [0, 1], (2)

whereby ,: [0, 1] � R is an admissible step-weight function of the Ditzian�
Totik modulus (see [9]) and ,2 is a concave function. Obviously (2)
includes (1) if , is replaced by .*, * # [0, 1]. It was also proved in [10]
that an inverse result to (2) holds true; i.e., : # (0, 2) and

| f (x)&(Bn f )(x)|�C1 \n&1�2 .(x)
,(x)+

:

, x # [0, 1], n=1, 2, ...,

implies |2
,( f, $)�C2$: if, in addition, .2�,2 is concave, which is fulfilled

for ,=.*, * # [0, 1], in particular.
In this paper we investigate the situation more generally for other

positive linear operators. Section 2 provides direct estimates for arbitrary
positive linear operators which will be applied to exponential-type and
Bernstein-type operators. In particular we obtain similar estimates (2) for
the Sza� sz-Mirakjan, Kantorovich-type and Durrmeyer-type operators. We
also show that similar estimates hold true for a class of Bernstein-type
operators which are ``not far away'' from the original Bernstein operator.
Section 3 establishes inverse results for positive linear operators.

2. DIRECT RESULTS

We shall study here positive linear operators of continuous functions
which are defined on finite or infinite intervals I/R. Without loss of
generality, let I be one of the intervals [0, 1], R+

0 or R. Different intervals
can be obtained by affine linear substitutions.

We will use the weighted K-functional of second order for f # C(I )
defined by

K2
,( f, $2) := inf

g$ # ACloc(I )
(& f& g&+$2 &,2g"&), $�0,
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in which & }& denotes the uniform norm on I and g$ # ACloc(I ) means that
g is differentiable and g$ is absolutely continuous in every closed finite
interval [a, b]/I. Moreover, the Ditzian�Totik moduli of first order are
given by

|,( f, $) := sup
|h|�$

sup
x\(h�2) ,(x) # I } f \x+,(x)

h
2+& f \x&,(x)

h
2+ }

and

|� ,( f, $) := sup
|h|�$

sup
x, x+h,(x) # I

| f (x+,(x) h)& f (x)|.

Given that ,: I � R is an admissible step-weight function it is well known
that K-functional K 2

,( f, $2) and Ditzian�Totik modulus |2
,( f, $) are equiv-

alent. Likewise |� ,( f, $) and |,( f, $) are equivalent (cf. [9]).
Now we can state the following result.

Theorem 1. Let I # [[0, 1], R+
0 , R] and A: C(I ) � C(I ) be a bounded

positive linear operator which preserves constants. In case I=[0, 1] let
|A(v&x)(x)|� 1

2 . If �, ,: I � R are functions with � an admissible
step-weight function of the Ditzian�Totik modulus and with ,2 concave then
the pointwise approximation

| f (x)&(Af )(x)|�w� � \ f ,
|A(v&x)(x)

�(x) ++4K 2
, \ f,

A((v&x)2)(x)
,2(x) +

holds true for x # I and f # C(I ).

Proof. First we construct a new operator A� =A+L which also pre-
serves linear functions. For that let (29 u f )(x)= f (x+u)& f (x) and

(Lf )(x)={&29 A(v&x)(x) f )(x), if x+A(v&x)(x) # I
(29 &A(v&x)(x) f )(x), if x+A(v&x)(x) � I

(3)

for x # I. (Because of assumption |A(v&x)(x)|� 1
2 for I=[0, 1] the right

side of (3) is well-defined for all x # [0, 1].) A simple calculation shows that
A� 1=1 and A� (v&x)(x)=0.

Now let x # I be fixed and g: I � R with g$ # AC loc(I ) be arbitrary. From
Taylor's expansion

g(t)= g(x)+ g$(x)(t&x)+|
t

x
g"(s)(t&s) ds, t # I,
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we see that

(A� g)(x)& g(x)=A� \|
v

x
g"(s)(v&s) ds+ (x). (4)

For each s=t+{(x&t), { # [0, 1], we can estimate (using the concavity
of ,2)

|t&s|
,2(s)

=
{|x&t|

,2(t+{(x&t))
�

{|x&t|
,2(t)+{(,2(x)&,2(t))

�
|x&t|
,2(x)

. (5)

Therefore

} |
t

x
g"(s)(t&s) ds }�&,2g"& } |

t

x

|t&s|
,2(s)

ds }
�&,2g"& } |

t

x

|t&x|
,2(x)

ds }
=&,2g"&

(t&x)2

,2(x)
(6)

and by positivity of A

A \|
v

x
g"(s)(v&s) ds+ (x)�&,2g"&

A((v&x)2 (x)
,2(x)

.

Although the operator L is not positive we can estimate by means of (6)
as

}29 u \|
v

x
g"(s)(v&s) ds+ (x) }= } |

x+u

x
g"(s)(x+u&s) ds }

�&,2g"&
u2

,2(x)

and therefore with u :=\A(v&x)(x)

}L \|
v

x
g"(s)(v&s) ds+ (x) }�&,2g"&

(A(v&x))2 (x)
,2(x)

.

Moreover, by application of the Cauchy�Schwarz inequality we have
|(Af )(x)|�- (A)( f 2)(x) (since for the positive operator A we have the
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representation (Af )(t)=�I f (u) d:t(u), where :t is increasing and satisfying
�I d:t(u)=1). This gives

(A(v&x))2 (x)�A((v&x)2)(x). (7)

Together with (4) we arrive at

|(A� g)(x)& g(x)|�
2A((v&x)2)(x)

,2(x)
&,2g"&

for all g with g$ # ACloc(I ).
Because &A� &�&A&+&L&�3 we obtain, for f # C(I ),

|(A� f )(x)& f (x)|�|(A� ( f &g))(x)|+| g(x)& f (x)|+|(A� g)(x)& g(x)|

�4 \& f& g&+
A((v&x)2)(x)

,2(x)
&,2g"&+ .

Taking the infimum on the right hand side over all g with g$ # ACloc(I ) we
obtain

|(A� f )(x)& f (x)|�4K 2
, \ f,

A((v&x)2)(x)
,2(x) +

and consequently,

|(Af )(x)& f (x)|�|(Lf )(x)|+4K 2
, \ f,

A((v&x)2)(x)
,2(x) + . (8)

Because

|(29 A(v&x)(x) f )(x)|

= } f \x+�(x) }
A(v&x)(x)

�(x) +& f (x) }
� sup

t, t+�(t) } (A(v&x)(x)��(x)) # I } f \t+�(t) }
A(v&x)(x)

�(x) +& f (t) }
�|� � \ f ,

|A(v&x)(x)|
�(x) +
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the estimate

|(Lf )(x)|�|� � \ f,
|A(v&x)(x)|

�(x) + (9)

holds true. Finally, inequalities (9) and (8) give the statement of the
theorem. K

The construction of A� =A+L in the proof of Theorem 1 via the
operator (3) follows an idea similar to that in [4, proof of Theorem 2.2].

Corollary 1. Let A, �, and , be given as in Theorem 1. If, in addition,
, is an admissible step-weight function of the Ditzian�Totik modulus then

| f (x)&(Af )(x)|�C \|� \ f,
|A(v&x)(x)|

�(x) ++|2
, \ f,

- A((v&x)2)(x)
,(x) ++

(10)

for x # I and f # C(I ), where the constant C depends only on � and ,.

Corollary 2. Let A and , be given as in Theorem 1. If, in addition, ,
is an admissible step-weight function of the Ditzian�Totik modulus and if A
preserves linear functions then

| f (x)&(Af )(x)|�C|2
, \ f,

- A((v&x)2)(x)
,(x) +

for x # I and f # C(I ), where the constant C depends only on ,.

For a sequence of positive linear operators An : C(I ) � C(I ), n=1, 2, ...,
Theorem 1 and the corollaries yield the rate of pointwise approximation of
functions with respect to the rate of pointwise approximation of x and x2.
Thus the measurement of the error depends on the step-weight functions
� and ,. Because of the relatively free choice of � and , we can bridge
the gap between the local and the global approximation when in
An((v&x)2)(x) the variables n and x can be separated from each other. If
we impose the estimation

An((v&x)2)(x)�C1_2(n) } .2(x) for x # I, n # N, (11)

in which .: I � R, .2 concave, and _(n) tends to zero for n � � then it
follows, by inequality (7) and Corollary 1 with � :=,, that

| f (x)&(An f )(x)|�C2 \|, \ f, _(n)
.(x)
,(x)++|2

, \ f, _(n)
.(x)
,(x)++ . (12)
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In view of the assumed concavity of .2, (12) yields for ,=1 a local and
for ,=. a global estimation of the approximation error. Consequently,
(12) bridges both local and global results.

If An preserves linear functions, the implication

|2
,( f, $)=O($:) ($ � 0) O | f (x)&(An f )(x)|�C \_(n)

.(x)
,(x)+

:

(n � �)

(13)

holds true for : # (0, 2]. Unfortunately, if An does not preserve linear func-
tions then (13) is fulfilled only for : # (0, 1) for the present because
|2

,( f, $)=O($:) implies only that |,( f, $)=O($:) for : # (0, 1). Thus, the
modulus of first order |,( f, _(n) .(x)�,(x)) in estimation (12) essentially
decelerates the rate of convergence. However, with respect to Theorem 1,
this term can also be taken as |�( f, |A(v&x)(x)|��(x)) for other choices
of admissible step-weight functions � of the Ditzian�Totik modulus. In the
case of Bernstein-type operators it will be seen that the error bound (10)
can be improved by suitable choices of �.

The question arises as to whether the converse result to (13) also holds
true. This question will be discussed in Section 3.

Now we shall illustrate the above theorems by some positive linear
operators. Let us first consider the exponential-type operators

(Ln f )(x)=|
I
W(n, x, u) f (u) du, x # I, n # N, (14)

where W(n, x, u)�0 fulfills the conditions

|
I

W(n, x, u) du=1, x # I, n # N,

and

d
dx

W(n, x, u)=
n

.2(x)
W(n, x, u)(u&x), x # I, n # N,

where . is an analytic function in the interior of I (cf. [12]). Ln is a
positive operator since W(n, x, u)�0. Simple calculations [12] show that
Ln preserves linear functions and

(Ln(v&x)2)(x)=
.2(x)

n
.
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If .2 is concave on I then with Corollary 2 the estimate

| f (x)&(Ln f )(x)|�C|2
, \ f, n&1�2 .(x)

,(x)+ (15)

holds true. In particular this is fulfilled for the operators of Gauss�
Weierstrass (.(x)=1) Sza� sz-Mirakjan (.(x)=- x), and Bernstein
(.(x)=- x(1&x)). Section 3 shows that an inverse also holds true.

It cannot yet be said whether inequality (12) also holds true for the
operators of Baskakov (.(x)=- x(1+x)), Post-Widder (.(x)=x), and
Ismail and May (.(x)=- 1+x2). In these cases .2(x) is not concave.

Let us now consider Bernstein-type operators given as

(Bn f )(x)= :
n

k=0
\n

k+ xk(1&x)n&k *n, k( f ), x # [0, 1], (16)

where *n, k # C[0, 1]* are bounded positive linear functionals. These
operators were considered before in serveral articles (e.g., [11]). For
the specific functionals *n, k( f )= f (k�n), *n, k( f )=(n+1) �(k+1)�(n+1)

k�(n+1) f (t) dt,
and *n, k( f )=(n+1) �1

0 f (t) pn, k(t) dt the operator (16) is the original
Bernstein, the Kantorovic, and the Durrmeyer operator, respectively.
Obviously, Bn preserves constants if *n, k(1)=1 for k=0, ..., n. In Section 3,
in addition, we will assume that Bn(61)/61 , where 61 is the space of
algebraic polynomials of degree at most one, is fulfilled.

It should be pointed out that (11) is not fulfilled for all Bernstein-type
operators if we set .(x)=- x(1&x). But the following theorem contains
conditions (17) for which the inequality is valid.

Theorem 2. Let .(x) :=- x(1&x) and ,: [0, 1] � R be an admissible
step-weight function of the Ditzian�Totik modulus with ,2 concave. Let Bn be
defined by (16) and *n, k # C[0, 1]* be positive linear functionals with
*n, k(1)=1 for k=0, ..., n. If

*n, 0( f )= f (0), *n, n( f )= f (1) (17)

and

*n, k \\v&
k
n+

2

+�M \1
n+

2#

, n # N, k=0, ..., n, (18)
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for constants M�0, #�1 independent of n and k then the estimate

| f (x)&(Bn f )(x)|�C \|,: \ f, n&#+:�2 .:(x)
,:(x)++|2

, \ f, n&1�2 .(x)
,(x)++

(19)

holds true for all x # [0, 1], f # C[0, 1], and : # (0, 2], where the constant C
depends only on , and :.

Proof. Following the same arguments as those in (7), the Cauchy�
Schwarz inequality and (18) show that

*n, k \v&
k
n+��*n, k \\v&

k
n+

2

+�
- M

n# . (20)

By using (17) and (20) we obtain

|Bn(v&x)(x)|= } :
n

k=0

pn, k(x) *n, k(v&x) }
= } :

n&1

k=1

pn, k(x) *n, k \v&
k
n+ }

�
- M

n# :
n&1

k=1

pn, k(x)=
- M

n# (1&xn&(1&x)n)

�
- M

n# (1&xn&(1&x)n):�2 (21)

for : # (0, 2]. If we set g(x) :=1&xn&(1&x)n we have

g(x)=(1&x) \ :
n&1

k=0

xk&(1&x)n&1+�n(1&x)

for x # [0, 1]. This also implies g(x)= g(1&x)�nx. If we let x # [0, 1
2]

then 2(1&x)�1 and g(x)�nx } 2(1&x). In the same way we obtain
g(x)�n(1&x) } 2x for x # [ 1

2 , 1] and therefore

1&xn&(1&x)n�2nx(1&x) for x # [0, 1]. (22)

From (21) and (22) we obtain

|Bn(v&x)(x)|�2:�2
- M n&#+:�2.:(x), x # [0, 1], n # N. (23)
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On the other hand, by using the inequality (r+s)2�2r2+2s2, r, s # R, we
see that

Bn((v&x)2)(x)= :
n

k=0

pn, k(x) *n, k \v&
k
n

+
k
n

&x+
2

�2 :
n

k=0

pn, k(x) *n, k \v&
k
n+

2

+2 :
n

k=0

pn, k(x) \k
n

&x+
2

�
2M
n2# :

n&1

k=1

pn, k(x)+2
x(1&x)

n

=
2M
n2# (1&xn&(1&x)n)+2

x(1&x)
n

. (24)

With the aid of (22) and assumption #�1 we obtain

Bn((v&x)2)(x)�
4M+2

n
.2(x),

which, with (23) and Corollary 1, � :=,:, concludes the proof. K

Remark. Especially for :=1 Theorem 2 gives

| f (x)&(Bn f )(x)|�C \|, \ f, n&1�2 .(x)
,(x)++|2

, \ f, n&1�2 .(x)
,(x)++ . (25)

If (18) is fulfilled only for # with 0�#�1 one can obtain (estimating (24)
by means of (22)) the weaker estimate

| f (x)&(Bn f )(x)|�C \|, \ f, n&#+1�2 .(x)
,(x)++|2

, \ f, n&#+1�2 .(x)
,(x)++

for x # [0, 1].
Theorem 2 gives local and global estimations of the approximation error

f (x)&(Bn f )(x) if Bn is, with respect to (18), ``not far away'' from the
original Bernstein operator. Condition (17) ensures that Bn f interpolates f
at the endpoints 0 and 1.

Estimates of f (x)&(Bn f )(x) in terms of 2n(x)=�n
k=0 pn, k(x) *n, k

((v&k�n)2) can be found in [11]. In opposition to our results (via Ditzian�
Totik moduli of smoothness with various step-weight functions) the local
behaviour of functions in [11] is measured by maximal Lipschitz function
f t

; (x) (see [11, Theorem 2.3]).
Because of the specific choice of the first step-weight function .: in

Theorem 2 we achieve the following result.
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Corollary 3. Let the assumptions of Theorem 2 hold true. If ,(x)�1
then the Bernstein-type operators (16) fulfill

|2
,( f, $)�C1 $: O | f (x)&(Bn f )(x)|�C2 \n&1�2 .(x)

,(x)+
:

(26)

for x # I and : # (0, #]"[1], where the constant C2 depends only on ,, C1 ,
and :.

Proof. Marchaud inequality (see [9, Chap. 4]) gives

|,( f, $)�C {$ |
c

$

|2
,( f, u)
u2 du+& f &= ,

where c>0 is any fixed constant. Consequently, |2
,( f, $)=O($:) implies

O($:), : # (0, 1)

|,( f , $)={O($ log |$| ), :=1 (27)

O($), : # (1, 2].

If : # (0, 1), then by (25) and (27)

| f (x)&(Bn f )(x)|=O \\n&1�2 .(x)
,(x)+

:

+
which gives the required statement for #=1. To prove the case #>1 let
: # (1, #]. Assumption ,(x)�1 yields ,:(x)�,(x), and therefore
|, : ( f, $)�C� |,( f, $) (cf. [9, Chap. 4]). By (27) and Theorem 2 this gives

| f (x)&(Bn f )(x)|�C� {n&#+:�2 .:(x)
,:(x)

+\n&1�2 .(x)
,(x)+

:

=
=C� {n&:�2 .:(x)

,:(x)
n&#+:+\n&1�2 .(x)

,(x)+
:

=
�2C� \n&1�2 .(x)

,(x)+
:

for : # (1, #] and :�2. If :>2 then |2
,( f, $)=O($:) implies that f is linear

(see [9, Chap. 4]). By (23) and ,(x)�1 we have

| f (x)&(Bn f )(x)|�C� |Bn(v&x)|�C�� n&:�2 .:(x)
,:(x)

for : # [2, #], which shows that (26) holds true. K
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We shall now investigate the present situation for Kantorovich-type
operators

(K I
n f )(x)= f (0) pn, 0(x)+ :

n&1

k=1

pn, k(x) *I
n, k( f )+ f (1) pn, n(x), x # [0, 1],

(28)

whereby the functionals are given by

*I
n, k( f )=

1
In, k

|
In, k

f (t) dt

for certain subintervals In, k /[0, 1]. For the sake of brevity let us set
[a, b]=[an, k , bn, k]=In, k . Then a short calculation gives

*I
n, k \\v&

k
n+

2

+=
1
3

(b&a)2&\k
n

&a+\b&
k
n+

and therefore

*I
n, k \\v&

k
n+

2

+�
1
3

|In, k | 2 if
k
n

# In, k .

If we assume that |In, k |=O(1�ns) for any s�1, then Corollary 3 shows
that

|2
,( f, $)=O($:) O | f (x)&(K I

n f )(x)|=O \\n&1�2 .(x)
,(x)+

:

+ (29)

for : # (0, s]"[1]. In the case of the original Kantorovich functionals, that
is, In, k=[k�(n+1), (k+1)�(n+1)], we obtain (29) only for : # (0, 1) since
|In, k |=O(1�n). If we set

In, k=_k
n

&
1
n2 ,

k
n

+
1
n2& , k=1, ..., n&1,

then (29) will be valid for : # (0, 2]"[1].
Finally, let us consider Durrmeyer-type operators

(Ds
n f )(x)= f (0) pn, 0(x)+ :

n&1

k=1

pn, k(x) *s
n, k( f )+ f (1) pn, n(x), x # [0, 1],

(30)
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where the functionals are defined by (see [11, 13])

*s
n, k f =

�1
0 f (t) pcn, ck(t) dt
�1

0 pcn, ck(t) dt
, c=[ns], s�0.

The calculation

*n, k \\v&
k
n+

2

+=*n, k(t2)&2
k
n

*n, k(t)+
k2

n2

=
(ck+1)(ck+2)
(cn+2)(cn+3)

&2
k
n

ck+1
cn+2

+
k2

n2

=
ckn2&nck2+2n2&6nk+6k2

(cn+2)(cn+3) n2

=
k�n&k2�n2+2�cn&6k�cn2+6k2�cn3

(1+2�cn)(cn+3)

establishes

*n, k \\v&
k
n+

2

+�
9

n1+s

for n # N and k=0, ..., n. Corollary 3 gives

|2
,( f, $)=O($:) O |(D s

n f )(x)& f (x)|=O \\n&1�2 .(x)
,(x)+

:

+ (31)

for : # (0, (1+s)�2]"[1] and all Durrmeyer-type operators Ds
n with s�1.

It should be noted that the original Durrmeyer functionals are excluded.

3. INVERSE RESULTS

In order to investigate an inverse to (13), a lemma will be needed first.
Lemma 1 generalizes a lemma of Becker [1, p. 138] for finite intervals.

Lemma 1. Let ,: [a, b] � R, ,�0, be a function with ,2 concave. Then
for all x # [a, b], h>0, with x\h # [a, b] the inequality

|
h�2

&h�2
|

h�2

&h�2

ds dt
,2(x+s+t)

�C
h2

,2(x)

holds true, whereby 8 log 2 can be chosen as the constant C.
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Proof. We first show that

|
h�2

&h�2
|

h�2

&h�2

ds dt
x+s+t

�(4 log 2) }
h2

x
for x # [h, �). (32)

If x�h and x&h�h, we see by means of (22
h f )(x) := f (x+h)&2 f (x)+

f (x&h) that

|
h�2

&h�2
|

h�2

&h�2

ds dt
x+s+t

�|
h�2

&h�2
|

h�2

&h�2

ds dt
h+s+t

=22
h(u log u)(h)=(2 log 2) } h

=(4 log 2) }
h2

2h
�(4 log 2) }

h2

x
.

On the other hand, if x&h�h then

|
h�2

&h�2
|

h�2

&h�2

ds dt
x+s+t

�|
h�2

&h�2
|

h�2

&h�2

ds dt
x&h

=
2h2

x&h+x&h

�
2h2

x&h+h
=

2h2

x
,

which proves (32).
Now we need a lower estimate for ,2(x+s+t), x # (a, b). If we let

u # [a, x], then u=a+{(x&a), {=(u&a)�(x&a), and by concavity

,2(u)�,2(a)+{(,2(x)&,2(a))�
u&a
x&a

,2(x) for u # [a, x]. (33)

Likewise, for u=x+{(b&x) # [x, b], {=(u&x)�(b&x), we obtain the
estimate

,2(u)�,2(x)+{(,2(b)&,2(x))�
b&u
b&x

,2(x) for u # [x, b]. (34)

Considering (33) and (34) for u=x+s+t in conjunction with (32) for
x&a, b&x # [h, �) we finally obtain
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|
h�2

&h�2
|

h�2

&h�2

ds dt
,2(x+s+t)

=||
s, t # [&h�2, h�2]

s+t�0

+||
s, t # [&h�2, h�2]

s+t�0

�
x&a
,2(x) |

h�2

&h�2
|

h�2

&h�2

ds dt
x+s+t&a

+
b&x
,2(x) |

h�2

&h�2
|

h�2

&h�2

ds dt
b&x&s&t

=
x&a
,2(x) |

h�2

&h�2
|

h�2

&h�2

ds dt
(x&a)+s+t

+
b&x
.2(x) |

h�2

&h�2
|

h�2

&h�2

ds dt
(b&x)+(s+t)

�(4 log 2) \x&a
,2(x)

h2

x&a
+

b&x
,2(x)

h2

b&x+=(8 log 2) }
h2

,2(x)
. K

Theorem 3. Let I # [[0, 1], R+
0 , R] and ,: I � R be an admissible

step-weight function of the Ditzian�Totik modulus. Moreover, let An : C(I ) �
C(I ), n # N, be bounded positive linear operators so that

|(An f )" (x)|�C1

n
.2(x)

& f & for x # I, f # C(I ) (35)

and

&,2(An g)"&�C2 &,2g"& for g$ # ACloc(I ), (36)

where ,2, .2, and .2�,2 are concave functions on I. Then for f # C(I ) and
: # (0, 2) the pointwise approximation

| f (x)&(An f )(x)|�C3 \n&1�2 .(x)
,(x)+

:

, x # I, n=1, 2, ..., (37)

implies

|2
,( f, $)�C4 $:, $>0.

Proof. Let x # I and h so that x\h # I and let (22
h f )(x)= f (x+h)&

2f (x)+ f (x&h). Both summands in

|(22
h f )(x)|�|(22

h( f &An f ))(x)|+|(22
hAn f )(x)|

shall be estimated. In order to estimate the first summand, we can use the
fact that .2�,2 is concave. If we let u=c+(1�2)(d&c) # [c, d] for any
[c, d]/I then

,2(u)
.2(u)

�
,2(d)

2.2(d )
and

,2(u)
.2(u)

�
,2(c)

2.2(c)
,
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showing for c=x&h, d=x+h, and u=x the inequalities

.2(x&h)
,2(x&h)

�2
.2(x)
,2(x)

and
.2(x+h)
,2(x+h)

�2
.2(x)
,2(x)

. (38)

Thus, in view of assumption (37), we obtain

|(22
h( f &An f ))(x)|�C3 \\.(x+h)

,(x+h)+
:

+2 \.(x)
,(x)+

:

+\.(x&h)
,(x&h)+

:

+ n&:�2

�(2 - 2+2) C3 \.(x)
,(x)+

:

n&:�2. (39)

By reason of the fact that K 2
,( f, $2) and |2

,( f, $) are equivalent we can
choose g= g$ # ACloc(I ), $�0, so that

& f& g&�A|2
,( f, $) and &,2g"&�B $&2|2

,( f, $).

From (35) and (36) for y # I we see that

|(An f )( y)"|�|(An( f &g))" ( y)|+|(An g)" ( y)|

�
C1 n

.2( y)
& f& g&+

C2

,2( y)
&,2g"&

�C4 \ n
.2( y)

+
1

$2,2( y)+ |2
,( f, $).

Use of Lemma 1 gives

|(22
hAn f )(x)|

=|
h�2

&h�2
|

h�2

&h�2
(An f )(x+s+t)" ds dt

�C4 |
h�2

&h�2
|

h�2

&h�2 \
1

.2(x+s+t)
+

1
$2,2(x+s+t)+ ds dt |2

,( f, $)

�C5 \ nh2

.2(x)
+

h2

$2,2(x)+ |2
,( f, $)
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for all x with x\h # I. Replacing h by h,(x) gives

|(22
h,(x)An f )(x)|�C5 \nh2,2(x)

.2(x)
+

h2

$2+ |2
,( f, $)

for all x with x\h,(x) # I. Together with (39) we have

|(22
h,(x) f )(x)|�C6 _\.(x)

,(x)+
:

n&:�2+\nh2,2(x)
.2(x)

+
h2

$2+ |2
,( f, $)& .

Now choose n so that

.(x)
,(x)

n&1�2�$�2 }
.(x)
,(x)

n&1�2.

Thus

|(22
h,(x) f )(x)|�C7 \$:+

h2

$2 |2
,( f, $)+

for all x with x\h,(x) # I. Taking supremum over all h with 0<h�t we
obtain

|2
,( f, t)�C7 \$:+

t2

$2 |2
,( f, $)+ , 0<t�$,

which yields the assertion of the theorem by the well-known Berens and
Lorentz lemma [2]. K

The assumption of Theorem 3 that ``.2�,2 is concave'' is needed only for
the purpose of deriving the estimations in (38) and (39). Therefore the
statement of Theorem 3 also holds true if the concavity of .2�,2 is replaced
by the inequality (.2(x+t))�(,2(x+t))�C(.2(x)�,2(x)), for x, x+t # I.

We now investigate the operators considered in Section 1. We begin with
the exponential-type operators Ln given in (14) whereby

.2 is a polynomial of degree at most 2 without a double zero,

.2(x){0 inside of I and .(x)=0 for finite endpoints of I (40)

and

J :=
n2

.4(x) |
;

: _
(.2(x))$

n
&(u&x)& (u&x)3 W(n, x, u) du�M, (41)
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where :=min[x, x+(.2(x))$�n], ;=max[x, x+(.2(x))$�n] and M must
be an absolute constant independent of n and x. Condition (41) has been
imposed by [15].

Lemma 2. Then for every concave function ,2: I � R the estimate

&,2(Ln g)"&�C &,2g"&, g$ # ACloc(I ), n # N,

holds true for any constant C independent of n, g, and ,.

Proof. By Taylor's formula we have

(Ln g)" (x)

=|
I _

d 2

dx2 W(n, x, u)&{g(x)+ g$(x)(u&x)+|
u

x
(u&s) g"(s) ds= du

and by reason of

|
I _

d 2

dx2 W(n, x, u)& (u&x) i du=0 for i=0, 1,

we obtain,

(Ln g)" (x)=|
I _

d 2

dx2 W(n, x, u)& |
u

x
(u&s) g"(s) ds du.

By positivity of Ln and (5)

|,(x)2 (Ln g)" (x)|�&,2g"& |
I }

d 2

dx2 W(n, x, u)} } |
u

x

|u&s|
,2(s)

ds } du ,2(x)

�&,2g"& |
I }

d 2

dx2 W(n, x, u) } } |
u

x
|u&x| ds } du

�&,2g"& |
I }

d 2

dx2 W(n, x, u) } (u&x)2 du.

Satô showed in [15, Sect. 3] that in view of (41) the integral on the right
hand side can estimated by 4+(.2(x))"�n+2J (J given by (41)). This gives
the required inequality. K

Theorem 4. Let Ln , n # N, be the exponential-type operators (14)
satisfying (40) and (41). If ,2, .2, and .2�,2 are concave functions on I then
the statements
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(i) | f (x)&(Ln f )(x)|=O \\n&1�2 .(x)
,(x)+

:

+ , x # I, n=1, 2, ...,

(ii) |2
,( f, $)=O($:), $>0,

are equivalent for f # C(I ) and : # (0, 2).

Proof. By reason of

|(Ln f )" (x)|�C1

n
.2(x)

& f &

(see [15, p. 40]) it follows, with Theorem 3 and Lemma 2, that (i) implies
(ii). Implication (ii) O (i) follows immediately from (15). K

Theorem 4 combines the local (,=1) and the global ,=.) estimates in
direct and converse cases. For Bernstein (.(x)=- x(1&x)) and Sza� sz-
Mirakjan (.(x)=- x) operators in particular we then have

| f (x)&(Ln f )(x)|=O((n&1�2.(1&*)(x)):) � |2
.* ( f, $)=O($:),

for all * # [0, 1] and : # (0, 2). The question is open as to whether the
equivalence holds true for Baskakov, Post-Widder, and Ismail and May
operators.

For the Bernstein-type operators given in (16) we show

Lemma 3. Let .(x)=- x(1&x), Bn be defined by (16), *n, k # C[0, 1]*
positive linear functionals with *n, k(1)=1 for k=0, ..., n and Bn(61)/61 .
Then for all f # C[0, 1]

|(Bn f )" (x)|�
2n

.2(x)
& f &, x # [0, 1], n # N. (42)

If

*n, k \\v&
k
n+

2

+�M \1
n+

2

, n # N, k=0, ..., n,

for any constant M�0 independent of n and k then

&,2(Bn g)"&�C &,2g"&, n # N, (43)

holds true for g$ # AC[0, 1] and ,: [0, 1] � R with ,2 concave. The constant
C in (43) can be replaced by 12M+16 - M+8.
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Proof. Let pn, k(x)=( n
k) xk(1&x)n&k. By differentiating (16) we obtain

(following [3, Chapt. 10, Sect. 5])

|(Bn f )" (x)|= } \ 1
.2(x)

:
n

k=0

(k&nx) pn, k(x) *n, k( f )+$ }
= } 1

.4(x)
:
n

k=0

((k&nx)2&(1&2x) k&nx2) pn, k(x) *n, k( f ) }
�

&*n, k& & f &
.4(x)

:
n

k=0

|(k&nx)2&(1&2x) k&nx2| pn, k(x)

�
&*n, k& & f &

.4(x)
} 2n.2(x),

which shows (since &*n, k&=1) the first stated inequality (42). The second
inequality (43) is obviously fulfilled for n=1. Hence we assume n�2. We
use p$n, k(x)=n( pn&1, k&1(x)& pn&1, k(x)) to obtain the representation
(which has been used also in [11, (2.15)])

(Bn g)" (x)=n(n&1) :
n&2

k=0

pn&2, k(x)(*n, k+2(g)&2*n, k+1(g)+*n, k(g)).

(44)

Due to the fact that *n, k+2( f )&2*n, k+1( f )+*n, k( f )=0 for f (x)=1 and
f (x)=x, which immediately follows from (44) and Bn(61)/61 , we derive
by Taylor's formula

g(t)= g \k+1
n ++ g$ \k+1

n +\t&
k+1

n ++|
t

(k+1)�n
(t&s) g"(s) ds

for g$ # AC[0, 1] that

(Bn g)" (x)=n(n&1) :
n&2

k=0

pn&2, k(x)

_(*n, k+2&2*n, k+1+*n, k) \|
v

(k+1)�n
(v&s) g"(s) ds+ .

Use of the positivity of the functionals *n, j and inequality (5) for concave
functions ,2 gives
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|,2(x)(Bn g)" (x)|�,2(x) &,2g"& n(n&1) :
n&2

k=0

pn&2, k(x)

_(*n, k+2+2*n, k+1+*n, k) \|
t

(k+1)�n

|t&s|
,2(s)

ds+
� :

n&2

k=0

,2(x)
,2((k+1)�n)

&,2g"& n(n&1) pn&2, k(x)

_(*n, k+2+2*n, k+1+*n, k) \t&
k+1

n +
2

. (45)

The summand on the right hand side can be estimated as (using (20))

*n, k+i \t&
k+1

n +
2

=*n, k+i \\t&
k+i

n +
2

&2
1&i

n \t&
k+i

n ++
(1&i)2

n2 +
�M

1
n2+2 - M

|1&i |
n2 +

(1&i)2

n2 for i=0, 1, 2

and consequently this gives

(*n, k+2+2*n, k+1+*n, k) \t&
k+1

n +
2

�(3M+4 - M+2)
1
n2 . (46)

In order to estimate, ,2(x)�,2((k+1)�n) in (45) we show the following two
inequalities. Let a # [0, 1]. Then

,2(x)
,2(a)

�
1&x
1&a

for x # [0, a], (47)

,2(x)
,2(a)

�
x
a

for x # [a, 1]. (48)

Now if we let x # [0, a], then a=x+{(1&x), {=(a&x)�(1&x), and

,2(a)�,2(x)+{(,2(1)&,2(x))�(1&{) ,2(x)=
1&a
1&x

,2(x),

showing that (47) holds true. In the same way, inequality (48) is estab-
lished by

,2(a)�,2(0)+{(,2(x)&,2(0))�{,2(x)=
a
x

,2(x)
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for x # [a, 1], a=0+{(x&0) with {=a�x. If x # [0, (k+1)�n] then (47)
with a=(k+1)�n gives

,(x)2

,2((k+1)�n)
pn&2, k(x)

�
1&x

1&(k+1)�n
pn&2, k(x)

=
n

n&1&k
(n&2)

k!(n&2&k)!
xk(1&x)n&1&k

�2
(n&1)!

k!(n&1&k)!
xk(1&x)n&1&k

=2pn&1, k(x) for n�2. (49)

If x # [(k+1)�n, 1] we deduce from (48), a=(k+1)�n, that

,(x)2

,2((k+1)�n)
pn&2, k(x)

�
nx

k+1
pn&2, k(x)

=
n

k+1
(n&2)!

k!(n&2&k)!
xk+1(1&x)n&2&k

�2
(n&1)!

(k+1)!(n&2&k)!
xk+1(1&x)n&2&k

=2pn&1, k+1(x) for n�2. (50)

Now taking (45), (46), (49), and (50) into account, we obtain

|,2(x)(Bn g)" (x)|�&,2g"&
n(n&1)

n2 :
n&2

k=0

2( pn&1, k(x)+ pn&1, k+1(x))

_(3M+4 - M+2)

�&,2g"& 4(3M+4 - M+2),

which completes the proof of the lemma. K

Finally, we arrive at

Theorem 5. Let .(x)=- x(1&x) and ,: [0, 1] � [0, 1] be an
admissible step-weight function of the Ditzian�Totik modulus.
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Let Bn be the Bernstein-type operators (16) with positive linear functionals
*n, k # C[0, 1]* satisfying *n, 0( f )= f (0), *n, n( f )= f (1), *n, k(1)=1,
k=0, ..., n, and

*n, k \\v&
k
n+

2

+�M \1
n+

2#

, n # N, k=0, ..., n,

for constants M�0, 1�#�2 independent of n and k. Moreover, let
Bn(61)/61 . If ,2 and .2�,2 are concave functions on [0, 1] then

| f (x)&(Bn f )(x)|=O \\n&1�2 .(x)
,(x)+

:

+ , x # [0, 1], n=1, 2, ...,

and

|2
,( f, $)=O($:), $>0,

are equivalent for f # C[0, 1] and : # (0, #)"[1].

Proof. Corollary 3 and Theorem 3 in combination with Lemma 3 give
the equivalence. K

Thus the above equivalence is valid for Kantorovich-type operators K I
n

in (28), i.e.,

| f (x)&(K I
n f )(x)|=O \\n&1�2 .(x)

,(x)+
:

+ � |2
,( f, $)=O($:)

for : # (0, #)"[1] if |In, k |=O(1�n#), # # [1, 2], and In, k=[ak , bk] are sym-
metric intervals around the points k�n. Obviously (because of the definition
of the functionals) *n, k(1)=1 holds true and because of *n, k( f )=
(ak+bk)�2=k�n for f (x)=x the assumption Bn(61)/61 of Theorem 5 is
valid. The same holds true for Durrmeyer-type operators D2#&1

n if # # [1, 2]
(see (30), (31); for D2#&1

n (61)/61 see [13]).
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